Trajectory Attractors for Reaction-diffusion Systems

نویسندگان

  • Vladimir V. Chepyzhov
  • Mark I. Vishik
  • Louis Nirenberg
  • M. I. Vishik
چکیده

(1) ∂tu = a∆u− f0(u, t) + g0(x, t), u|∂Ω = 0 (or ∂u/∂ν|∂Ω = 0) where u = u(x, t) = (u, . . . , u ), x ∈ Ω b R, t ≥ 0, f0(v, s) = (f 0 , . . . , f 0 ), (v, s) ∈ R × R+, g0(x, s) = (g 0 , . . . , g 0 ), x ∈ Ω, s ≥ 0. We assume that the matrix a and the functions f0, g0 satisfy some general conditions (see Section 2). These conditions provide the existence of a solution u of the Cauchy problem for the system (1) (u|t=0 = u0, u0 ∈ H = (L2(Ω)) ). However, this solution can be non-unique because we do not suppose any Lipschitz conditions for f0(v, s) with respect to v. The pair of functions (f0(v, s), g0(x, s)) = σ0(s) is called the symbol of equation (1). To construct a trajectory attractor for (1), we consider the family of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications

In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solut...

متن کامل

Upper Semicontinuity of Random Attractors for Non-compact Random Dynamical Systems

The upper semicontinuity of random attractors for non-compact random dynamical systems is proved when the union of all perturbed random attractors is precompact with probability one. This result is applied to the stochastic Reaction-Diffusion with white noise defined on the entire space Rn.

متن کامل

upper semicontinuity of attractors for small random perturbations of dynamical systems

The relationship between random attractors and global attractors for dynamical systems is studied. If a partial differential equation is perturbed by an −small random term and certain hypotheses are satisfied, the upper semicontinuity of the random attractors is obtained as goes to zero. The results are applied to the Navier-Stokes equations and a problem of reaction-diffusion type, both pertur...

متن کامل

Attractors for Partly Dissipative Reaction Diffusion SYstems in R^n

In this paper, we study the asymptotic behavior of solutions for the partly dissipative reaction diffusion equations in ‫ޒ‬ n. We prove the asymptotic compact-ness of the solutions and then establish the existence of the global attractor in 2 Ž n .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007